Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content.

نویسندگان

  • Arthur J Michalek
  • Mark R Buckley
  • Lawrence J Bonassar
  • Itai Cohen
  • James C Iatridis
چکیده

Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orientations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering.

A novel design of silk-based scaffold is developed using a custom-made winding machine, with fiber alignment resembling the anatomical criss-cross lamellar fibrous orientation features of the annulus fibrosus of the intervertebral disc. Crosslinking of silk fibroin fibers with chondroitin sulphate (CS) was introduced to impart superior biological functionality. The scaffolds, with or without CS...

متن کامل

Injury mechanisms of the cervical intervertebral disc during simulated whiplash.

STUDY DESIGN A kinematic analysis of cervical intervertebral disc deformation during simulated whiplash using the whole cervical spine with muscle force replication model was performed. OBJECTIVES To quantify anulus fibrosus fiber strain, disc shear strain, and axial disc deformation in the cervical spine during simulated whiplash. SUMMARY OF BACKGROUND DATA Clinical studies have documented...

متن کامل

Optical Coherence Tomographic Elastography Reveals Mesoscale Shear Strain Inhomogeneities in the Annulus Fibrosus.

STUDY DESIGN Basic science study using in vitro tissue testing and imaging to characterize local strains in annulus fibrosus (AF) tissue. OBJECTIVE To characterize mesoscale strain inhomogeneities between lamellar and inter-/translamellar (ITL) matrix compartments during tissue shear loading. SUMMARY OF BACKGROUND DATA The intervertebral disc is characterized by significant heterogeneities ...

متن کامل

Shear Mechanics of Electrospun Scaffold for Annulus Fibrosus Tissue Engineering

INTRODUCTION Engineering functional replacements for the annulus fibrosus (AF) is contingent upon successful replication of anatomic form and mechanical function. Recently, our group and others have demonstrated the utility of electrospun scaffolds for AF tissue engineering [1]. These ordered, nanofibrous scaffolds direct cell alignment and deposition of a functional fibrocartilage matrix [1]. ...

متن کامل

Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds.

Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 42 14  شماره 

صفحات  -

تاریخ انتشار 2009